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Abstract
An efficient method is presented for the determination of switching transients
in overhead lines. This new approach is based on the partial fraction expansion
of the network functions in the Laplace s-domain. Newton’s algorithm is used
to locate the poles in the complex s-plane. Accurate analytical expressions of
the line parameters are used to take into account losses in the ground. Some
simulation results are shown.

PACS numbers: 84.40.Az, 84.70.+p, 02.60.−x

1. Introduction

The determination of the overvoltage stresses in a power system network is of great importance
for the design of overvoltage protection systems. In simulating switching transients, the
most commonly employed transmission line models are distributed parameter models [1, 2].
Because the line parameters depend on the signal frequency [1], particularly when the
ground return is involved, it is recommended to simulate in the frequency domain [3, 4].
The conventional approach is to use convolution techniques in conjunction with the Fourier
transform to determine the impulse response of an arbitrary power-network system. While the
explicit analytical expression of the impulse responses is impractical, the numerical inverse
fast Fourier technique (FFT) suffers from the fact that a large number of frequency points
is needed to avoid aliasing effects. The drawback of the direct convolution is that it is time
consuming.

In this paper, an efficient and accurate frequency-dependent distributed parameter line
model is used. This model was obtained directly from the scattering theory [5] under quasi-
TEM hypothesis [6]. Recently, it has been proved that the transmission line characteristics,
in this model, may be calculated analytically at less computational cost [7]. On the other
hand, the impulse responses of the network are approximated in the Laplace-domain to avoid
the above-mentioned drawbacks. Indeed, equations describing the network are represented
in a matrix form using the modified nodal admittance (MNA) matrix. Then, it is possible
to find the poles of the transfer functions by the well-known Newton’s method. Once poles
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Figure 1. The transmission line geometry.

and residues of transfer functions are obtained, expressions for switching transients may be
accomplished in closed form for sine-wave sources.

2. Distributed line parameter model

With the assumption of quasi-TEM wave propagation, the distributions of voltages and currents
in an m above-ground coupled transmission-line system can be described by the generalized
telegraphist’s equations in the frequency s-domain [3, 6]:

∂V(z, s)

∂z
= −Z(s)I(z, s) (1)

∂I(z, s)
∂z

= −Y(s)V(z, s) (2)

where 0 < z < l, and V(z, s) and I(z, s) are column vectors defining the voltages vk(z, s) and
currents ik(z, s) distributing along the conductors k = 1, 2, 3, . . . ,m. l is the length of the
line, Z(s) and Y(s) are m×m dimensional matrices which represent the series impedance and
the shunt admittance per unit length of the line, respectively. Figure 1 illustrates the geometry
of the line over a ground plane taken as a reference conductor. A series of m parallel wires
is located in the air (y > 0) above a conducting ground (y < 0) with electrical parameters
σg, εg and µ0. The kth wire has a radius of ak, and is located at height y = hk and a position
x = dk.

The characteristic parameters, Z(s) and Y(s), appearing in the transmission line model
of equations (1) and (2), take the following expressions:

Z(s) = Zw(s) + s
(

L +
µ0

2π
J
)

(3)

Y(s) = s

v2

(
L +

µ0

2π
G
)−1

= s

v2

(
v2C−1 +

1

2πε0
G
)−1

(4)

in terms of the inductance matrix L, of the capacitance matrix C, and of the internal impedance
matrix of the wires Zw with respect to the ground. v is the speed of light in air. The matrix
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J represents the conduction losses in the ground. Furthermore, considering the fact that the
soil is of finite conductivity, it is also necessary to take into account the displacement current
losses in it. Such a contribution is represented by the matrix G. Note that the particular case
σg → ∞, that is to say the ground is perfectly conducting, yields G = 0 and J = 0.

The quantities of equations (3) and (4), which are obtained as a consequence of applying
the quasi-TEM approximation directly to scattering theory equations, have been detailed in
[6]. The result is repeated here.

The elements of the inductance matrix are

Lkl = µ0

2π
ln

(
ρ∗

kl

ρkl

)
(k, l = 1, 2, . . . ,m) (5)

where ρkl = ρlk indicates the distance between the centres of the kth and lth wires, which
reduces to the radius of the kth wire for k = l, and ρ∗

kl = ρ∗
lk the distance of the ith wire from

the image of the kth wire with respect to the air–ground interface.
The capacitance matrix C can be expressed in terms of the inductance matrix L:

C = v2L−1. (6)

The internal impedance matrix elements Zwkl can easily be determined for various
conductor types [8]. For thin solid conductors

Zwkl = µw

2πbk

√
s
I0(bk

√
s)

I1(bk

√
s)

δkl

(7)

δkl =
{

1, k = l

0, k �= l
(k, l = 1, 2, . . . ,m)

where bk = ak

√
σwµw , with µw and σw the electrical parameters characterizing the kth wire.

I0(z) and I1(z) are the modified Bessel functions.
The contribution of losses in the ground is specified by the matrices G and J whose

elements are [6, 7]

Jkl =
∫ +∞

−∞

exp(−|λ| (hk + hl) − iλ |dk − dl|)
|λ| +

√
λ2 − k2

0(n
2 − 1)

dλ (8)

Gkl =
∫ +∞

−∞

exp(−|λ| (hk + hl) − iλ |dk − dl|)
n2 |λ| +

√
λ2 − k2

0(n
2 − 1)

dλ (9)

where n =
√

εg/ε0 + σg

ε0 s
is the complex refractive index of the ground. k0 = is/v is the

propagation constant in air. Note that the integrals (8) and (9) depend on the electrical
parameters of the ground and the geometrical configuration of the line.

When dealing with the integrals (8) and (9), the conventional technique for their evaluation
is numerical integration. Because the effective length of the integration interval changes as a
function of the above-mentioned parameters, the numerical integration process suffers from
the fact that the desired accuracy often requires a large number of interval subdivisions. As
a consequence, this technique is time consuming, particularly when repeated evaluations are
needed.

To avoid this drawback, we have developed simple and accurate analytical expressions
for the integrals (8) and (9) in [7], which are valid for all parameters. Only the final results
will be quoted here:

Jkl = ln

(
ρc

kl

ρ∗
kl

)
(k, l = 1, 2, . . . ,m)

where ρc
kl =

√
(dk − dl)

2 + (hl + hk + 2/(k0

√
1 − n2))2.
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Figure 2. Voltages and currents along the line of length l.

For the elements of the matrix G, some algebraic manipulations are used to rewrite the
result from [7] under the following compact form:

Gkl = P(�kl) + P(�̄kl) (10)

where �kl = k0(hk + hl + i|dk − dl|), �̄kl = k0(hk + hl − i|dk − dl|) and

P(z) =
(

−1

4
+

1

2

1

n2 + 1

)
Q(bz) +

1

4
Q

(
bz +

2b√
n2 − 1

)
− 1

2
ln

(
1 +

2√
1 − n2

)
(11)

with Q(z) = exp(−z)E1(−z) + exp(z)E1(z). The exponential integral is defined by
E1(z) = ∫∞

z
exp(−t)/t dt [9, p 228] and b = i/

√
n2 + 1.

3. Formulation of the network equations

In this section, the starting point for determining the network equations is shown in figure 2,
which represents an m-wire multiconductor line of length l located over a lossy ground.
z represents the length along the line.

The behaviour of the voltages and currents along the line obeys the generalized
telegrapher’s equations (1) and (2) which can also be written as

∂Ψ(z, s)

∂z
= −A(s)Ψ(z, s) (12)

where

Ψ(z, s) = (v1(z, s), v2(z, s), . . . , vm(z, s), i1(z, s), i2(z, s), . . . , im(z, s))T

and

A(s) =
(

0 Z(s)

Y(s) 0

)
. (13)

The general solution for the column vector Ψ is given by

Ψ(z, s) = exp(−A(s)z)Ψ(0, s) 0 < z � l. (14)

Superscript T designates the transpose. The matrix exponential exp(−A(s)z) and the matrix
A(s) are of dimension 2m × 2m.
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Figure 3. Circuit example for illustrating the formulation. Energization of an open circuited
three-phase line.

Let K designate the matrix exponential exp(−A(s)l),

K = exp(−A(s)l) =
(

K1,2 K1,2

K2,1 K2,2

)
(15)

where the matrices Ki,j (i, j = 1, 2) are of dimension m × m and are dependent on s.
Then, it can readily be shown that the terminal currents and voltages at the near end

(z = 0) and the far end (z = l) of the line are related by the admittance matrix Ỹ(
I(0, s)

−I(l, s)

)
= Ỹ

(
V(0, s)

V(l, s)

)
=
(

Ỹ1,1 Ỹ1,2

Ỹ2,1 Ỹ2,2

)(
V(0, s)

V(l, s)

)
(16)

with

Ỹ1,1 = Ỹ2,2 = −K−1
1,2K1,1 Ỹ1,2 = Ỹ2,1 = K−1

1,2. (17)

Now, we deal with a simple power system in order to illustrate the formulation. The
network configuration consists of an open circuited three-phase line shown in figure 3.

The Laplace transform of Kirchhoff’s laws which are applied to the source network leads
to

(R + Ls)V(0, s) + (LCs2 + RCs + 1)I(0, s) = E. (18)

It should be noted that R and L are scalars. The column vector E is defined by
E = (E1, E2, E3)

T with Ej (j = 1, 2, 3) the independent sources of the network.
If we combine equations (16) and (18), we may obtain a modified nodal analysis

representation of the network

y(s)χ(s) = e(s) (19)

where the modified nodal admittance matrix y(s) is given by

y(s) =




Ỹ1,1 Ỹ1,2 −U

Ỹ21 Ỹ2,1 0

(CLs2 + RCs + 1)U 0 (R + Ls)U


 . (20)

U is the unit matrix of dimension 3 × 3. χ(s) = (V(0, s), V(l, s), I(0, s))T is the vector
corresponding to the circuit variables.
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4. Transfer functions

When one substitutes for the vector e(s) a constant vector c with entries determined by the
independent sources so that (ci ∈ {0, 1}, i = 1, 9), the elements of χ(s) are called the network
transfer functions. The impulse response of the network is the time function χ(t).

Consider the partial fraction expansion of the network transfer function χ(s)

χ(s) =
∑
α=1

rα

s − λα

. (21)

The impulse response χ(t) is then expressed as a sum of exponential terms

χ(t) =
∑
α=1

rα exp(λαt) (22)

where λα are the poles of χ(s) and rα their associated residues. While replacing e(s) by c in
(19), one can easily show that λα are zeros of det(y(s)).

In locating the poles in the complex s-plane, the Newton–Raphson algorithm has been
adopted. To use such a procedure, the first derivative y(1)(s) of the network matrix y(s) with
respect to s is needed. This is given by

y(1)(s) = dy(s)

ds
=




Ỹ(1)
1,1 Ỹ(1)

1,2 0

Ỹ(1)
2,1 Ỹ(1)

2,2 0

C(2Ls + R)U 0 LU


 . (23)

The superscript (1) in the above matrix designates the derivative with respect to s.
The (α + 1)th approximation of the pole λα+1 is then obtained from the previous

approximation λα using the equation

λα+1 = λα − χk(λα)

[y−1(λα)(y(1)(λα)χ(λα))]k
(α � 0) (24)

with

χ(λα) = y−1(λα)c.

In addition, the subscript k designates the kth element of a 3m (m = 3) dimensional vector.
Since all the network transfer functions have the same poles, k takes an arbitrary fixed value
between 1 and 3m.

After choosing an initial guess λ0 to the pole, the iteration should be stopped when �λ < ε

(�λ = λα+1 − λα and ε is the desired accuracy of the pole).
Let λ∗ be a pole of χ(s). It is then easy to show that its corresponding residue r∗ is

given by

r∗
k = χ2

k (λ∗)
[y−1(λ∗)(y(1)(λ∗)χ(λ∗))]k

(k = 1, 2, . . . , 3m). (25)

An examination of the Newton–Raphson formula in equation (24) shows that it is
necessary to calculate the matrix K and the first derivative of the transmission line admittance
matrix Ỹ with respect to s. In dealing with the matrix K, which is a matrix exponential, the
usual method for its computation is based on the eigen analysis of matrices [4]. In this case,
K can be expressed in terms of the eigenvalues and eigenvectors of matrix A(s)l. When using
such a method, dỸ/ds requires the derivatives of the eigenmodes of the line. Due to tedious
matrix operation, this method seems to be complicated for evaluating dỸ/ds.

In this work, the eigenvalues of the matrix A(s)l are computed using the QR-method [11].
The matrix is first balanced and transformed into upper Hessenberg form. The exponential
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matrices can then be expressed as a sum of exponential functions with matrix coefficients. To
deal with dỸ/ds, let us consider the relationship (12). Making use of its first derivative with
respect to s, we obtain

∂Ψ(1)(z, s)

∂z
+ A(s)Ψ(1)(z, s) = Q(z, s) (26)

where

Q(z, s) = −dA(s)

ds
Ψ(z, s). (27)

At this stage, it should be pointed out that the derivative of A(s) can be obtained by formal
differentiation of the expressions given in section 2. To do this, we can proceed using, for
example, Maple.

From the theory of ordinary differential equations, we can obtain the general solution of
(26) in the form

Ψ(1)(z, s) = exp(−A(s)z)

[∫ z

0
exp(A(s)x)Q(x, s) dx + Ψ(1)(0, s)

]
. (28)

By combining equations (14)–(16), (26) and (27), and using the following boundary
conditions: [

V(0, s)

V(l, s)

]
=
(

U 0

0 U

) [
V(1)(0, s)

V(1)(l, s)

]
=
(

0 0

0 0

)

for equations (14) and (26), we get(
0 0

−Ỹ(1)

2,1 −Ỹ(1)

2,2

)
= K

(
T
(

U 0
Ỹ1,1 Ỹ1,2

)
+

(
0 0

Ỹ(1)

1,1 Ỹ(1)

1,2

))
(29)

where

T = l

∫ 1

0
exp(Alx)

(
−dA

ds

)
exp(−Alx) dx. (30)

From (29), one may easily compute the first derivative of the line admittance matrix
required for Newton iterations. To save computation time, it is convenient to use integration
rules of Gauss type for calculating the matrix T. In this work, we have approximated the
integral in (30) using the 4-point Gauss–Legendre [10] rule which provides very good results
independently of the parameters of the studied structures.

5. Results

To show the efficiency of our method, we will consider two examples. Thereafter, we will
assume that each conductor has a radius of a = 2.5 mm and the earth is described by the
parameters σg = 0.01 �/m and εrg = εg/εo = 15. The source parameters have the following
values: R = 6.5 �,L = 0.034 H and C = 0.005 µF.

Example 1. The configuration shown in figure 4 consists of the energization of an open
circuited single phase line. The line was assumed to have a height h1 = 15 m over the earth
and a length l = 150 km.

It is easy to show that the conventional line voltage and current satisfy the condition

Ψ(z, s∗) = Ψ∗(z, s)
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Figure 4. Single-phase line energization.
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Figure 5. Locations of poles in the upper half plane Im(s) > 0.
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Figure 6. Impulse response at the far end of the line.

where the asterisk denotes the complex conjugate. This property reduces the domain of interest
by half. For convenience we use the upper half plane Im(s) � 0. From this, one immediately
infers that the singularities are symmetrically placed with respect to the Re(s)-axis.
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Figure 8. Locations of poles in the upper half plane Im(s) > 0 for three-phase line. In the figure
each dot represents a pole.

The poles of the system of figure 4, which occur in complex-conjugate pairs, are obtained
using the Newton iterative formula (24). The locations of these poles are depicted in
figure 5. It is useful to emphasize here that poles, which are represented by dots in figure 5, are
located approximately on a line slightly deviating from the pure imaginary axis (Im(s)-axis).
Moreover, the poles are quasiuniformly spaced. It should be noted that the alignment of
the poles and the uniformity of the space between them are characteristics that one recovers
for all the line parameters. This aspect is a great advantage of our method. Indeed, if we
consider two consecutive poles λk and λk+1, which could be reached using starting points
on the Im(s)-axis in the s-plane and arranged as |λk| < |λk+1|, we may approximate the
complex step between the poles by � ≈ λk+1 − λk . Then, it is possible to speed up the
convergence of the Newton iterative process using starting points λα (α = 1, . . . , N) chosen
so that Im(λα) = Im(λk) + Im(�)

Re(�)
(Re(λα) − Re(λk)). N is the number of required poles.

The transient response v(l, t) at the far end, which is kept open, to the impulse input is
computed by using the proposed method and the FFT. The results from the FFT method are
obtained from (19) by substituting s for iω and then applying the numerical inverse Fourier
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Figure 9. Voltages at receiving three-phase line end.

transform to go from the frequency domain back to the time domain. As shown in figure 6, the
results are superimposed. On a Pentium III/1 GHz processor, the FFT method takes 62.01 s
to finish this example for 512 harmonics while our method uses only 19.86 s for 15 poles,
which is about three times faster. The computation time depends on the number of the poles
to be located. Generally, the model incorporating the first four pairs of complex-conjugate
poles (dominant poles) is an excellent approximation of the exact transfer functions. Such
a model yields substantial computation economies. Furthermore, the amount of computer
storage needed is much less than the Fourier requirement. For example, the FFT method
requires 70.2 kB for the solution given in figure 6 while the proposed method requires only
45.7 kB. This requirement depends on the number of poles and the total solution times.

The line was energized by a sine-wave source. The Laplace transform of a 60 Hz
sinusoidal signal

e(t) = UM sin(ωot + φo) (31)

applied to the line sending end is given by

E(s) = UM

cos(φo)ωo + sin(φo)s

s2 + ω2
o

. (32)
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From (32) and (22), one can easily obtain the line far end voltage in the following closed form:

v(l, t) = 2UM Re

(
r2α

∑
α

−λα sin(ωot + φo) − ωo cos(ωot + φo)

ω2
o + λ2

α

+
(ωo cos(φo) + λα sin(φo)) exp(λαt)

ω2
o + λ2

α

)
. (33)

Figure 7 shows the curve associated with the expression (33) for φo = π/3.

Example 2. The circuit is shown in figure 3, where three coupled lines are presented. As
an example, the geometric parameters of this configuration of lines are assumed to have the
following values: d12 = d23 = d13 = 1 m, h1 = h3 = 10 m and h2 = 15 m.

The conductor of height h2 is excited by the sine-wave source given in (31). The length of
the three-conductor line is 150 km. The locations of poles in the complex s-plane are shown
in figure 8. The output waveforms at the far end of the line for the simultaneous closing of the
switches are drawn in figure 9.

6. Conclusion

An efficient and accurate method for assessing the switching transients in overhead lines is
presented. It is based on the formulation of the transmission line network equations in the
complex s-domain. The rational approximation of the transfer functions can be easily obtained
by locating their poles in the complex s-plane. This is done by using an iterative technique
based on Newton’s scheme. A simple formula for calculating residues is used. The proposed
method permits the calculation of the switching transients in closed-form for sine-wave source.
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